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In  this paper, weakly nonlinear interactions in a strongly-stratified, inviscid flow are 
re-examined, taking into account the presence of both internal waves and vortical 
modes. We use a multiple scale fdrmulation, based on the two characteristic times of 
the problem. Ertel’s potential vorticity motivates a splitting of the velocity into 
propagating (wave) and non-propagating (vortical) contributions. We focus on the 
three fundamental interactions : the wavelwave, wave/vortex and vortex/vortex 
interactions. The oft-studied wavelwave interwJion illustrates the difference 
between potential and vertical vorticities. We then identify two additional 
resonances for the wave/vortex and vortex/vortex interactions respectively. The 
wave/vortex resonance provides a mechanism for redistributing energy in spectral 
space while the vortex/vortex interaction may give rise to an internal wave field. 

1. Introduction and background 
In order to assess the effect of a stable stratification upon the evolution of 

turbulence, Lin & Pao (1979) carried out a series of experiments in which slender 
objects were towed in a tank which was stably stratified with salt water. Initially, the 
ensuing wakes behaved as in the absence of stratification. After about a quarter of 
a buoyancy period, however, the wakes collapse&, releasing some energy in the form 
of an internal wave field. From dye visualizations they observed that, after roughly 
five buoyancy periods, some definite coherent, mainly horizontal, meandering 
structures became apparent. These.persisted for another five or so buoyancy periods 
before slowly dying away. Direct numerical simulations of the decay of stratified 
homogeneous turbulence by Riley, Metcalfe & Weissman (1981) have revealed 
similar behaviour : the stratification tends to enhance the growth of horizontal scales 
while suppressing vertical motion. Taking advantage of the two timescales which 
arise naturally in this problem, Riley et al. have poposed a scaling which, at low 
Froude number, effectively splits the velocity field into propagating (wave) and non- 
propagating (vortical mode) components. The formulation in terms of propagating 
and non-propagating motions has also been used by Staquet & Riley (1989) to 
analyse the later stages of decay of a strongly-stratified turbulent mixing layer. Their 
numerical results indicate that, for large times, the vortical mode is much more 
energetic than the wave mode. Staquet & Riley (1990) have also devised a numerical 
method to extract diagnostically the velocity field associated with a potential 
vorticity distribution. 

At  large geophysical scales, the non-propagating mode is the familiar geostrophic 
mode, representing a balance between the Coriolis force and the pressure gradient. 
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Muller et al. (1986) have postulated that the observed oceanic current fine structure 
is a manifestation of the vortical mode at  the small scales. This mode, they argue, is 
needed to account for the potential vorticity present in the flow (hence the name 
potential vorticity mode). Moreover, estimates of potential vorticity from the IWEX 
data reveals that the energy contained in non-wave motion is significant and 
contributes to the observed shear (Muller, Lien & Williams 1988). In  the atmosphere, 
one hypothesis put forth by Gage (1979) and expanded upon by Lilly (1983), using 
a scale analysis similar to that of Riley et al. (1981), is that the observed horizontal 
energy spectrum at the mesoscales is due to  an upscale energy transfer through 
stratified turbulence. As initially three-dimensional turbulence evolves, roughly half 
of its energy propagates away in the form of an internal wave field, while the rest is 
transformed to  quasi-horizontal turbulence. The latter, exhibiting some of the 
features of two-dimensional turbulence, transfers some of its energy upscale, 
producing a K-: power law energy spectrum, characteristic of two-dimensional 
turbulence (Kraichnan 1967). The small fraction of energy which travels to larger 
scales appears able to reconcile theory with observations. Gage’s more recent work 
(Gage & Nastrom 1988) indicates the presence of a superposition of waves and 
vortical structures, the latter clearly apparent in the horizontal velocity fields. In a 
related numerical experiment, Herring & MBtais (1988) have looked into the 
occurrence of a K-: inverse cascade of energy for strongly-stratified three-dimensional 
turbulence by selectively forcing the small scales. With two-dimensional forcing, 
they have observed a weak inverse cascade in the horizontal as well as pronounced 
vertical variability. The inverse cascade and vertical variability disappear, however, 
as the forcing becomes three-dimensional. More recently, Dong & Yeh (1988) have 
examined off-resonant interactions among internal gravity waves, vortical modes 
and acoustic waves in an isothermal atmosphere. Using an eigenmode formulation 
similar to  that of Muller et al. (1988) along with a linear stability analysis, they give 
an example of a strong off-resonant interaction between a primary internal wave and 
two secondary vortical modes. The vortical modes exhibit exponential growth and 
Dong & Yeh have suggested that this drain of energy from the wave may help 
explain the saturation of wave energy observed in the atmosphere. They have not, 
however, made the distinction between potential and vertical vorticities and, 
consequently, as we will see below, their results remain ambiguous. 

The aim of this study is to  assess the effect of the vortical mode on the evolution 
of strongly-stratified flows by examining various possible weakly nonlinear 
interactions. I n  the next section we formulate our mathematical model, using a 
multiple timescale formulation. Then, in the subsequent sections, we discuss weakly 
nonlinear wavelwave, wave/vortical mode, and vortical mode/vortical mode 
interactions. Our conclusions and discussion are presented in the final section. 

2. Mathematical model 
The governing flow equations are, 

1 9 _-  - ---Vp--pi,, Du 
Dt P b  P b  

3- - 0, Dt 

v - u  = 0, 
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where D/Dt  = a/a t+u.V.  Here u is the velocity vector, p is the pressure, and 

p(x, y, z, t ,  = P b  +p(z) +P(x, t ,  (4) 

is the density, expressed as the sum of a constant reference density pb, a linear 
ambient density p(z)  and a perturbation density p ( x ,  t ) .  i3 denotes the unit vector in 
the positive z-direction, opposite to the gravity. force. We have assumed the 
Boussinesq approximation. 

We non-dimensionalize with a single velocity scale U and single lengthscale L,  both 
to be set for each example addressed, and one t ipe T,. For T,, we choose the 
buoyancy period, 

( 5 )  
T,'% 1 

where, 

The density scales as pbiVU/g. The pressure scale is chosen in such a way that 
pressure gradients appear in the lowest-order equations. 

We introduce Ertel's potential vorticity, 

n = r . v p .  (7) 

In the absence of viscous and diffusive forces, I7 is conserved following the motion 
(Ertel 1942). This means that individual fluid parcels retain their own potential 
vorticity. Thus, potential vorticity is a non-propagating quantity in the sense that 
it is not transferred between fluid particles. It can hence be used to trace the non- 
propagating vortical mode. We define the wave field to be precisely that part of the 
flow which propagates and hence does not contribute to the potential vorticity and 
the vortical part (non-propagating) to be accountable for all of the potential 
vorticity (in the absence of a mean flow). The important consequence of potential 
vorticity conservation for the present problem is that, if no vortical mode is present 
initially, none can be created through a weakly nonlinear interaction. 

Physically speaking, 17 gives a measure of the component of vorticity in the 
direction of the density gradient. When the deviations from equilibrium are slight, 
the constant-density (isopycnal) surfaces are, to a first approximation, horizontal. 
The potential vorticity is then simply proportional to the vertical vorticity. As the 
isopycnals steepen, however, the nonlinear contribution can no longer be neglected. 
Thus, only in the linear limit are vertical and potential vorticities synonymous. This 
correspondence between potential and vertical vorticity motivates a splitting of the 
velocity field (used in the present context by Riley et d. and by Lilly) which, in the 
linear limit, corresponds exactly to a wave/vortical mode decomposition. 

The velocity is written in terms of a stream function Y(x, y, z, t ) ,  a scalar velocity 
potential @(x, y, z, t )  and a vertical velocity w(z, y, z, t ) ,  

u = i3 x V ,  Y + { V , @ + w i 3 } ,  (8) 

where V, is the horizontal gradient operator. The first term is horizontal and non- 
divergent, and accounts for all of the vertical vorticity in the flow. It is thus the 
linear projection of the vortical mode velocity. The second bracketed term is 
vertically irrotational and divergence-free, and thus represents the linear wave 
velocity. In  the linear limit, the vortical velocity is entirely horizontal and the 
vertical velocity traces the wave field. 
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Inherent to the problem is the presence of two natural timescales, T, defined 
previously and T, = L/U, an advective timescale. The ratio of these two timescales, 

defines a Froude number. When the ambient density gradient is large, N is large also. 
In this case, two distinct timescales emerge, and the Froude number appears as a 
small parameter E .  

Associated with T, and 7 are dimensionless times, 

to = t/To a 'fast' time, (10) 

and, t, = t/T, = €to a 'slow' time. (11)  

The crux of the multiple scale method consists of treating to and t, as independent 
variables. Then the time derivative is rewritten, 

a a  a 
at at, at, 
- _  - -+€--. 

We expand all flow variables in power series of E .  The uniform validity of the 
solutions for sufficiently large times is ensured by imposing the constraint that each 
of the coefficients in the power series remain of O( 1)  for all times (see, e.g. Kevorkian 
&, Cole 1981). Upon substitution of (8) into (1)-(3) and after some algebraic 
manipulations, we obtain at the lowest order, 

a 2  

at; 
L(w,) = - v ~ w , + v ~ w ,  = 0, 

U 
M (  !Po) = -v; Yo = 0, 

at, 

ab, 
a t 0  

N(bo)  -+w, = 0. 

Equation (13) is the familiar linear internal wave equation, (14) is the linear vertical 
vorticity equation and (15) is the buoyancy equation. At this order, wave and 
vortical fields are decoupled and the slow timescale does not appear explicitly. Also 
notice that the vertical vorticity remains constant on the fast timescale. Since, to 
lowest order, potential and vertical vorticities are proportional, this is consistent 
with the requirement that the potential vorticity be conserved at, each order. 

At the next order of approximation, we have 

with the nonlinear wavelwave, wave/vortical and vortical/vortical coupling terms 
appearing on the right-hand sides. 
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The linear problem has three independent eigenmodes. Two are associated with 
internal waves with corresponding eigenfrequencies wk = If: ~ ~ / ( ~ i + m ~ ) i .  Here K is a 
wavenumber vector with horizontal and vertical, components Kh = (k, 1)  and m, 
respectively, and K~ = 1 ~ ~ 1 .  The third has eigenfrequency w, = 0;  it represents the 
non-propagating vortical mode. Initial conditions for the three cases addressed in 
this paper will consist of linear combinations of these three eigenmodes. 

3. The wavelwave interaction 
The purpose of this first case is to illustrate how a wave/wave interaction can lead 

to a production of vertical vorticity without violating the conservation of potential 
vorticity. Hence no vortical mode component is generated by this interaction. The 
initial configuration is made up of two waves with wavevectors K,, K~ and amplitudes 
&A2 and no vortical modes. 

w(x,O,O) = A,sin(K1-x)+A2sin(K2.x),  (19) 

aw 
at 
- ( x , t o , t l ) ~ t - o  = -A,w,cos(K,.x)-A~w~cos(K~.x), 

b ( X ,  0,o) = -1 A COS (K, * X) -- A2 COS ( K 2 ' X ) ,  

"1 w2 

where w1 and w2 are the respective internal wave frequencies of modes K, and K ~ .  

Pressure is scaled in such a way that the pressure gradient terms are retained at the 
lowest order. This amounts to picking [PI = p,NUL. From (14), we can only conclude 
that Yo is independent of to ,  

with, 

For the vertical velocity, we assume a simple solution of the form, 

w,(x, to, t , )  = a,(t,) sin O1 +a2(t,) sin O2 (25) 

where the phase function O is defined as, 

er = Kr.X-wWitO+Et(tl) (i = 1,2). 

The amplitudes a,, a2 and the phases El, E2 are real functions of the slow time t,. 
Imposition of the initial conditions yields, a,(O) = A,,  a2(0) = A ,  and &(O)  = 0, 
E,(O) = 0. From the continuity relation, we obtain an expression for @, and solving 
(15) gives b,. The calculation must be carried out to the next order to get the 
t ,  dependence of the solutions. 

The O(E)  initial conditions are, 
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We proceed by first considering (17). Since Yo is not a function of to,  the first two 
terms on the right-hand side are independent of to and thus satisfy the homogeneous 
equation. If retained, they will give rise to a particular solution YP which will be 
linear in to. As t, becomes O(l/s) ,  eYP will become O(1) and the asymptotic series for 
Y will no longer be uniformly valid. In order to avoid this breakdown of our solution, 
we must eliminate such secular terms from the right-hand side. This is achieved by 
setting 

We pause for a moment and see what can be deduced from our present knowledge 
of Yo. We know that, 

Y ( x ,  0) I t - O  = 0. (31) 

In  addition, 

and (30) tells us that Yo is conserved following the motion on the slow timescale. This 
implies that  

Thus, the only forcing term in (17) is f w w .  Upon substitution of the lowest-order 
solutions into the right-hand side of (17) ,  we obtain 

Y o ( x ,  t l )  = 0. (33) 

M(e1)  = !91a2p-3 ( k l l , - k , l , ) ( c o s 8 ~ , + c ~ ~ 8 ~ 2 ) ,  
Kh, Kiz (34) 

where, (35) 

Here K~ = (ki ,  l i ,  mi ) ,  with i = 1,2.  Physically, the remaining terms on the right-hand 
side represent forcing of the vertical vorticity due to the vortex turning mechanism, 
the velocity field of each wave turning the other wave’s horizontal vorticity toward 
the vertical. The solution is readily written down, 

e:, = (XI * X z ) - x -  (q * 4 t o  + ( E l  * 6, ) .  

The first two terms represent the particular solution and C ,  is the homogeneous 
solution. Imposition of the initial condition yields, 

1 
sin [ ( K ~ + K ~ ) . X ] + -  

0 1  - W2 

1 

The expression for Vi Y1 vanishes if either 

kl 1, = k, 4, (38) 

(39) 
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If (38) is satisfied, the two wave vectors lie in the same vertical plane. Consequently, 
their associated internal wave velocities also lie in this plane while the vorticities are 
horizontal and out of the plane. In the out-of-plane direction, the velocity vectors are 
constant and the term responsible for the vorticity turning identically vanishes, 

Ch.VW = 0. (40) 
Thus, no turning results. 

If (39) is satisfied, the two waves have equal frequencies as can be seen by rewriting 
(39) as, 

which is equivalent to, 

In this case, the turning of the horizontal vorticity of wave 1 by the vertical velocity 
of wave 2 is exactly equal and opposite to the turning of the horizontal vorticity of 
wave 2 by the vertical velocity of wave 1.  Thus, no net vertical vorticity is produced. 
We note that the expression for Vk Yl remains well-behaved since the vanishing of 
one of its denominators (wl w2 = 0) is always accompanied by the vanishing of the 
numerator. Hence, for all wave vectors K~ and K ~ ,  Yl remains bounded. 

Moreover, note that the presence of a non-zero O(E) correction to the vertical 
vorticity does not violate Ertel's theorem. Consider the scaled version of the 
potential vorticity equation, 

In order for the multiple scale formalism to be consistent, potential vorticity must 
be conserved a t  each order. 

At the lowest order, this constrains the vertical vorticity c,, to be independent of 
to. A t  O(E) ,  the bracketed expression must vanish, or 

- -"Q,- *, . qo2 -- a (6,. Vb,). 

at, at, at, 
(44) 

It is straightforward to show, by manipulating the equations, that (44) is exactly 
(17) .  In this particular example, some vertical vorticity is produced by the 
interaction of two waves yet the potential vorticity, and hence the vortical field, 
remains zero. The difference between potential and vertical vorticities has, we feel, 
been overlooked by Dong & Yeh. In their formulation, the non-zero vertical vorticity 
would be interpreted as a manifestation of vortical mode activity. 

We return to (16) and (18). Upon substitution of the lowest-order solutions, they 
become 

2 

L(w,) = - 2w, K: cos 8, -a, + a1 a2{c2 cos 8:, + c2 cos 8,} (45) 
t-1 

aa 2 

sin 8, - 2 cos 8, + a1 a,{Q;, cos q, + Q;, cos 812}, (46) 
L-1 at, 
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where expressions for the terms in r and $2 are, 

and, 

The first four terms on the right-hand side are solutions of the homogeneous 
operator. If retained, they will lead to unbounded growth of the solution and hence 
must be discarded. 

The fifth term satisfies the homogeneous equation if 

W ( K 1  + K 2 )  = W ( K 1 )  + O ( K z ) .  (49) 

This is the condition which the frequencies must satisfy for a resonant interaction. 
Similarly, the sixth term is secular if 

o ( K ~ ) - w ( K ~ )  = W ( K , - K ~ ) .  (50) 

If neither resonance condition holds, the elimination of secular terms leads to the 
conclusion that a,, a2, El and 5, all remain constant on the slow timescale. In this 
case, the interaction has at most an O(s) effect on the initial waves. If, on the other 
hand, one of the resonance conditions, e.g. (49), is satisfied, then a third wave with 
wave vector K, + K~ will be excited and it will periodically exchange energy with 
waves K, and K~ on the slow timescale. In this case, we must assume a different form 
of solution for w,,, one which will allow the excited wave to become as large as the two 
primary waves. The elimination of secular terms then leads to coupled evolution 
equations for the three wave amplitudes. We shall not, a t  this point, include the 
details of the resonance calculation. The purpose of this example was not to rederive 
previously established results but rather to illustrate the importance of distinguishing 
between potential and vertical vorticities in interaction problems. The interested 
reader should refer to Phillips (1981) or Bretherton (1964) for a thorough treatment 
of wave/wave resonances. 

4. The wave/vortical mode interaction 
In this section, we consider the interaction of one internal wave and one vortical 

mode. Of particular interest is whether a strong interaction, analogous to the 
wave/wave resonant interaction, can be found. 

We proceed in the usual fashion by imposing initial conditions on w, awlat and Y. 
For the vortical field, 

For the wave field, 

!P(x,O,O) = Bsin(x2.x). (51) 

w(x, 0 , O )  = A sin (K,*x), (52) 

(53) 
aw 
at 
- (X, to ,  t , )  ( t = O  = -Awl cos (K1-X), 

(54) 
A 

W1 
and for the buoyancy, b(x,O,O) = --COS(K1.X). 
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The pressure is scaled, as in the last section, in such a way that the pressure gradient 
terms appear in the lowest-order equations. 

The O(1) initial conditions are, 

w,(x,O,O) = sin(K1.x), 

aw0 - (x, to, tl) It =o  = -wl cos (K, .x), 
at0 

V i  Yo(x, 0, 0) = -BK& sin (K,. x), 

1 

w1 

bo(x, 0 , O )  = ---0s (K1 * x). 

The vertical vorticity is readily written down, 

V i  Yo(x, tl)  = - K i , p ( t l )  sin O,, 

with, 0, = K , . ~ + p ( t , ) ,  

and, from the initial conditions p(0) = B and p(0) = 0. 
For the wave field, we have 

w,(x, to, 4 )  = 4 4 )  sin 01, 
where, el = K1.X-W1to+E(tl), 

and, from the initial data, a(0) = 1 and [(O) = 0. 
The velocity potential, Qo, is readily found from the continuity relation, 

For the buoyancy, we have 

1 

w1 
b o W O , t l )  = - - C O S ~ , + C , ( ~ , ~ , ) ,  

with, C1(X, 0) = 0. 

As in the previous section, the t, dependence of the amplitudes and phases is obtained 
by carrying out the calculation to O(s) .  Owing to the transverse nature of the 
eigenmode velocities ( V - u  = 0) ,  the self-advection of a single wave or a single vortical 
mode is identically zero. Therefore, the only non-zero forcing at  O ( E )  is due to the 
wave/vortical mode interaction. Upon substitution of the expressions for the lowest- 
order solutions into (16) and the regrouping of like terms, we have, 

L(w,) = - 2 K i W 1  + a p ~ , s i n 8 ~ , + ~ p ~ ~ s i n i 9 ; , ,  (66) 

where, 

and, 

(68) 
We proceed to eliminate secular terms. The first two terms on the right-hand side of 
(66) always satisfy the homogeneous operator and will need to be discarded. The 
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third term on the right-hand side of (66) is a solution of the homogeneous operator 
only if 

Similarly, the fourth term must be discarded if, 

w ( K ~ )  = W ( K ~  + K , ) .  (69) 

W ( K 1 )  = W ( K 1 - K 2 ) .  (70) 
These are the resonance conditions for the wave/vortical mode interaction. If neither 
condition is satisfied, the elimination of the secular terms implies that, 

aa 

at1 
= 0, - 

Thus, both the amplitude and the phase of the initial wave remain constant on the 
slow timescale when there is no resonance. The expression for w1 is readily written 
down : 

+c 7, sin ( K , . X + W ( K , )  to+&&)).  
n 

(73) 

The first two terms comprise the particular solution while the last two form the 
homogeneous solution. This expression remains uniformly valid for times of O( 1 / ~ )  
as long as the denominators of the particular solution are not of O(e) ,  i.c. as long as 
w;lltc1+K2112- IIKlh+K2hJ12 is not O ( E ) .  The vanishing of one of tlhe denominators 
signals a resonance. The coefficients fl and f ,  are of similar form as the I'; of the 
previous section and will not be repeated here. 

As in the wave/wave resonance of last section, we have a region of width O ( E )  
about the exact resonance within which our solution breaks down. As in the last 
section, we first finish the treatment of the non-resonant case before approaching the 
resonant one. 

We now substitute the lowest-order solutions into the vertical vorticity equation, 

M (  Yl) = ~i~ { sin O2 + p + A:, a1 /Iz sin 8:, + A;, a1 p2 sin 8y2, (74) 

with the wave/vortex interaction coefficients, 

All right-hand side terms which are independent of to are secular and must be set 
equal to  zero in order to preserve consistency of the asymptotic series. I n  the non- 
resonant case, only the first two right-hand terms are secular. Hence, amplitude and 
phase of the vortical mode remain constant on the slow timescale as well. 
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FIQURE 1. Wave/vortex resonant triad. 

FIQURE 2. Examples of wave/vortex resonant triads. 

The O ( E )  correction to the vertical vorticity is: 

A+ 4 2  Vi Y, = ~BsinO:2+-BsinO;2+g(~.~,) .  
W l  W1 

This expression is well-behaved everywhere. If w1 ia zero, the numerator vanishes as 
well so there is no problem there. g(x, t l )  is the homogeneous solution. Its temporal 
dependence can be determined by carrying out the analysis to O(e2) but this will not 
be done here. 

The elimination of the secular term from the buoyancy equation requires, as in the 
preceding section, that the integration constant C ,  is only a function of the spatial 
variables. We do not pursue this any further. The interesting case is clearly the 
resonant one. The geometrical significance of an O(s)  denominator in (73) is most 
easily illustrated with a diagram of the resonant triad against the backdrop of a 
constant-frequency surface in wavenumber space, as shown in figure 1.  The 
frequency of linear internal waves is independent of the wavenumber magnitude and 
depends only on the angle that the wavenumber makes with the vertical axis. 
Therefore, these surfaces are circular vertical cones and the condition w ( K , )  = 
W ( K ~  + K ~ )  implies that x1 and K, +x2 = K, lie on the same cone. 

The vortical mode K~ along with the two waves K~ and K, form a resonant triad. As 
demonstrated in figure 2, there is an infinite number of possible resonant triads. We 
proceed with a method analogous to the one used for wavelwave resonant 
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interactions and assume a form for the lowest-order solutions that will permit the K~ 

wave to  become of O(1). The form of wo is now taken as, 

wo = al(tl) sin 8, +a3(tl) cos 8,, (77) 

where, e3 = K 3 . X - w 1 t 0 + & .  (78) 

Note that we have modified our notation slightly (a is now a, and 6 is cl). Since the 
two waves have equal frequencies, w ( K ~ )  = w ( K ~ ) ,  and we use w1 to denote the 
frequency of either wave. The in shift between the first and third waves was added 
for convenience. 

I n  accordance with the initial conditions, 

a,(O) = 1 ,  (79) 

With the new lowest-order solution, the O(s)  wave equation is, 

I n  addition to wave/vortex forcing, we also have wave/wave terms, representing the 
interaction of the two waves. These are of the same form as the forcing terms 
examined in the last section. Their effect will remain of O ( E )  unless a third wave exists 
with which K~ and K~ can form a resonant triad, 

W1 + W 3  = W(K1 + K 3 ) .  (84) 

We shall not consider this possibility, as the analysis then reverts back to the one 
carried out in the previous section. To eliminate secular terms. we define some 
complex amplitudes, 

az cos = Re (az )  = aiR for i = 1,3 ,  (85) 

a, sin.& = Im (ai) E azI for i = 1 ,3 ,  (86) 

and, p2 cosp2 = Re (b,) = b2,, 

P2sinp2 = Im (b,) b2,. 

We also define, 

where y(tl) represents the combination of slowly-varying phases. 

0i = Oz+q(t,) ,  

Now 
( K 1 + K 2 ) - X - w 1 t 0  = K3.X-ww,to, (90) 
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and, ( K 3 - K , ) . X - - W , t o  = K 1 ' X - W l t o .  (91) 

The elimination of secular terms is carried out by setting the coefficients of cos 8, and 
sin 8, (i = 1,3) respectively equal to zero. Combining the equations for the real and 
imaginary parts of a, into a single equation, we obtain 

(92) 
aa 

~ K ~ W  = G3a3b:. 

An equation for a3 is obtained in the same fashion, 

at, 

2 K 2 W  - aa3 - - - c 2 a , b ,  
at, (93) 

with the r terms written down in a symmetric fashion as functions of K, and K ~ ,  

ri3 = +(k3 1, - k ,  Z3) { ml m3 w 1 ( 2 k 1  k3 + 2zl l 3 )  

K;* 

ril = i ( k 3  1, - k ,  13) { ml m3 w1(2k1 k3 + 2z1 l 3 )  + w 1 ( K i 3 - m t ) + 2  ") . (95) 4, 0 1  

By noting the following simple relationship, 

and defining 

equations (92) and (93) can be simplified to, 

This set of equations for the two wave amplitudes is also coupled to the vortical mode 
amplitude. The slow time behaviour of the vortical mode is inferred from the O ( E )  
vertical vorticity equation, 

M( y1) = K:* ("5 sin 8, + + A13 a1 a3{sin (el + e,) 
at, 

- (sin 8, cos (5, - 5,) + cos 8, sin (E3 -El))} 
+Al2 alp2 sin (0, +e2) + a3B2 sin (0, -e2), (100) 

where only the secular terms have been expressed in terms of b2R and €I,~. The 
elimination of secular terms yields an evolution equation for b,, 
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where 
m2 mi 

A,, = ~ ( k 3 2 , - k , Z 3 )  1-1 . 
(Kt, K h )  

A13 vanishes when w, = w3, as can be seen by rewriting the second factor in (102) as, 

This was, in fact, one of the conditions for zero vertical vorticity production a t  O ( E )  
deduced in the previous section. This implies that, 

and b, = B,. Therefore, the equations for a,  and a3 can be readily combined into a 
single equation for, say a,, 

a2a, -+ r ’ , b ,  b2 a,  = 0. (105) at; 

We incorporate b, b,* = Bt into the coefficient 

r2 = Yl2Bt. (106) 

Since T 2  is always real and positive, the solutions are purely oscillatory. Thus the 
0(1) solutions are, 

wo = cos Ttl sin 8, -sin Tt, cos 8,, 

!Po = B, sin 8,, 

(107) 

(108) for the wave part and, 

for the vortical mode. 

coordinates, (97) is written, 
Let us now examine the expression for the interaction coefficient r. In  spherical 

r= ; ( B , ~ , ~ ~ s i n ~  ysin(q5,-q5,))(cos2 yco~(q5~-q5,)+sin* y } ,  (109) 

where K~ and K~ are the respective magnitudes of the two wavenumbers, y is the angle 
to  the vertical of the two waves (since they have equal frequencies, the angle that 
each makes to the vertical is equal), and $, and q53 are the respective azimuthal angles 
of waves 1 and 3. 

ki = K~ sin y cos $ i ,  (110) 

l i  = K~ sin y sin q5i, 

mi = K~ cosy, 

where i = 1 and 3. Several limiting cases are identified: 

Case (i) : q53-q51 = 0 

coexist but do not exchange any energy. 

Case ( i i )  : q53 -$, = fn 

maximum value for fixed p, and simplifies to 2~~ K ,  sin4 y .  

This corresponds to the two waves lying in the same vertical plane. The two waves 

The two wavenumbers have orthogonal horizontal projections. r attains a 
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The vortical mode here acts as a catalyst in that its presence is necessary to set up 
the interaction, yet it does not actually participate in the energy exchange. This type 
of behaviour is reminiscent of the resonant interaction between a slowly varying 
horizontal shear and two internal waves, first investigated by Phillips (1968). In 
Phillips’ triad, the horizontal shear interacts with two internal waves of equal 
frequencies but with opposite inclination to the vertical. The wavenumbers form the 
two equal sides of an isosceles triangle. As in the present case, the shear merely acts 
as a catalyst. Our triad is of a more general nature, however, since no restrictions 
exist on the vertical direction of propagation of the two waves. There are many 
vortical modes K~ which will interact with a given internal wave K~ to excite a wave 
K~ of equal frequency. Another difference is that the present triad is not restricted to 
lying in a vertical plane. In  fact, as was shown, the interaction coefficients vanish if 
the wavenumbers happen to lie in a vertical plane. This resonance is therefore 
inherently three-dimensional and different from Phillips’ triad. 

The analysis as it stands does not provide any clues as to whether preferred 
interactions exist. Nor can we, at this point, draw any conclusions about the relative 
importance of this class of resonances as compared with induced diffusion, elastic 
scattering and parametric subharmonic instability resonances (McComas & Brether- 
ton 1977). It is nonetheless conceivable that the predicted internal wave spectra 
for both atmosphere and ocean could be significantly modified if this new class of 
resonances is taken into account, for it provides an additional mechanism through 
which wave energy can redistribute itself in spectral space. One might expect that it 
would tend to isotropize the spectrum. Furthermore, these results appear to 
substantiate the conclusions drawn by MBtais & Herring (1989) regarding the 
strength of wave/vortical mode interactions in their numerical simulations of forced 
stably-stratified turbulence at  small Froude numbers. They found that, at small 
Froude numbers, waves and vortical modes exchange very little energy. Since no net 
energy is exchanged in the wave/vortex resonance, their results are consistent with 
the present findings, 

5. The vortical mode/vortical mode interaction 
We now examine the interaction of two vortical modes. Velocity scales and 

lengthscales are based, as in the previous examples, on the initial conditions. The 
pressure is scaled as a dynamic pressure, [PI = pb U2, and the buoyancy as eNU. The 
only modification that this scaling brings to the governing equations is that the 
nonlinear terms involving buoyancy now appear at  O(sz) rather than at O(e) .  

Consider the following conditions, 

Vi Y(x ,O)  = - B , K ~ ~ ~ ~ ~ ( K ~ ~ X ) - B , K ~ ~ ~ ~ ~ ( K , ~ X ) ,  (113) 

w ( x ,  0 , O )  = 0, (114) 

aw aP - = - € - - + € b ( X , O , O ) .  
at az 

Again, we assume the simplest solutions at the lowest order, 

Vi yd(x ,  to, tl) = -Bl(tl) K& sin 8, -B2(tl) sin 02, (116) 

with, Pl(t = 0) = B,, P2(t = 0) = B, and Ot = ~ ~ - x + p ~ ( t , ) .  For the wave field, we have 

wo(x, t o ,  4) = 0. (117) 
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At O(E), the initial conditions are, 
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v; Y,(X, 0,O) = 0, 

W,(X,O,O) = 0, 

awl=-- + b,. 
at, aZ 

Since Yo is independent of the fast time to,  the vortex/vortex term in the O(s )  wave 
equation remains zero. Thus at O ( E ) ,  no forcing of the wave field occurs as a result 
of the vortex/vortex interaction. If pressure and buoyancy are in perfect hydrostatic 
equilibrium, then the right-hand side of (120) will vanish. Initial hydrostatic balance 
also implies that the horizontal pressure gradient is equal to the nonlinear term, as 
can be seen from the equation for the pressure, 

i3b 
vzp - 2- 1. ( U O ' V U O ) ,  aZ 

which reduces to v,po = - (U, 'VUo) ,  (122) 

when the vertical pressure gradient and the buoyancy are equal. In  this case, the 
initial conditions satisfy the steady-state equations and no adjustment takes place. 
Thus, no waves result. 

If the initial vertical acceleration is non-zero, on the other hand, we have 

[ a , ( ~ ,  t l )  exp (iwt,) +Y,(K,  t , )  exp (-iwt,)] exp ( -iK-x) dK. (123) 

The behaviour of the constants a, and y, at t = 0 is determined from the initial 
conditions, 

w1 = IISP, 

The amplitude of the resulting wave field is proportional to the deviation from 
hydrostatic balance of the initial flow. Furthermore, it scales as the Froude number. 

We now proceed to eliminate secular terms from the vorticity equation by setting 

However, given the simple form of Yo, the only possible solutions to (126) are the 
trivial solutions p1 = p2 and = B,, p2 = B,. Furthermore, unlike the examples of 
$83 and 4, adding contributions to Yo from the K, K~ modes will not suffice. Energy 
will quickly spread to higher harmonics. This is because, in terms of perturbation 
analysis, the vortex/vortex interaction is inherently resonant and broadbanded. The 
resonance condition on the frequencies is automatically satisfied since all vortical 
modes have zero frequency. Therefore, the only condition needed in order for three 
vortical modes to form a resonant triad is that their wave vectors form a triangle 
( K , + K ,  = K~). The interaction of any two vortical modes will resonantly excite two 
additional modes which, in turn, will interact with others and so on. The reason for 
this behaviour is that, as Yo satisfies (126), it is fully nonlinear on its own timescale 
(q), and the perturbation method is not appropriate. 
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We shall not carry this example any further. We have shown that the 
vortex/vortex interaction is very broadbanded. Energy initially concentrated in two 
modes will rapidly spread out over the whole Fourier spectrum. If the flow is initially 
out of hydrostatic balance, an adjustment will take place and some energy will be 
released as waves, whose amplitudes will scale as the Froude number and as the 
deviation from the hydrostatic state. Any waves generated by the interaction of two 
vortical modes per se will appear at  O(e2) and thus be negligible. 

6. Conclusion 
We have re-examined the problem of weakly nonlinear interactions in strongly- 

stratified blows, taking into account the presence of both vortical modes and internal 
waves. Taking advantage of the two inherent timescales that govern the evolution 
of the flow, a rigorous, multiple-scale mathematical model has been formulated. 

We have sought to clarify the important distinction between vertical and potential 
vorticities in the nonlinear regime. Only in the linear approximation are the two 
synonymous, and it is the potential vorticity rather than the vertical vorticity which 
must be used in distinguishing vortical modes from internal waves. Whereas a 
weakly nonlinear wave/wave interaction may result in the production of some 
vertical vorticity, it cannot alter the potential vorticity of the flow. 

In addition to wave/wave interactions, wave/vortex and vortex/vortex inter- 
actions also exist and they are likely to affect the dynamics of strongly stratified 
flows. Like their wave/wave counterpart, the effects of these two additional 
interactions are most strongly felt when resonance conditions are met. We have 
identified resonant triads for both wave/vortex and vortex/vortex interactions. 

The wave/vortex resonant triad involves two equal-frequency waves and one 
vortical mode. The presence of the vortical mode is crucial to the set-up of this 
resonance, yet it does not engage in any energy exchange with the wave field, acting 
instead as a catalyst in moving energy from one wave to the other. This transfer of 
energy is periodic in time, with the frequency directly proportional to the vortical 
mode amplitude, the magnitudes of the wave wavenumbers and the frequency of the 
two waves. 

In the vortex/vortex interaction, the resonance conditions are automatically 
satisfied by any three wave vectors K ~ ,  K~ and K~ if K~ = K , ~ K , .  The resonance 
condition on the frequencies is identically satisfied since the frequency of any vortical 
mode, regardless of its wavenumber, is zero. Consequently, the vortex/vortex 
interaction is very broadbanded, the energy spreading out in spectral space through 
a cascade of resonant interactions as described above. On its own slow timescale, the 
evolution of the vortical field is inherently nonlinear. If the wave vectors of two 
interacting vortical modes happen to lie in the same vertical plane or have equal 
horizontal components, the resonance is suppressed and vortical energy remains 
localized in the two modes. As long as the two interacting vortical modes exhibit 
vertical variability, their interaction (resonant or non-resonant), through the set-up 
of vertical pressure gradients, will result in the generation of some small-amplitude 
internal waves with corresponding wave vectors K~ k K ~ .  Strong interactions 
subsequently take place between these waves and the vortical field when 
wave/vortex resonance conditions are encountered. Energy eventually gets redis- 
tributed throughout the entire spectrum of waves as a result of these resonances. 

In the context of geophysical fluid applications, the wave/vortex and vor- 
tex/vortex resonances may be significant. The former provides an additional 
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mechanism capable of redistributing wave energy in spectral space, while the latter 
offers a source of internal wave generation. Because of its somewhat elusive nature, 
the wavelvortex resonance has until now escaped notice. Since it does not result in 
a net exchange of energy between wave and vortical fields, i t  has not been detected 
in direct numerical simulations involving broadbanded flows. Further studies are 
needed a t  this point to establish how the presence of the wavelvortex and 
vortexlvortex interactions affect the behaviour of existing weakly nonlinear theories. 
In particular, calculations of internal wave spectra should be re-examined with these 
added features. 

Furthermore, one can envisage many possible situations in which wave and 
vortical modes might interact in a strongly nonlinear fashion that cannot be handled 
with our inviscid perturbation scheme. As demonstrated in 55, the vortexlvortex 
interaction does not lend itself very well to a weakly nonlinear model. 

We conclude by stating that the results of this study provide further evidence that 
the role of the vortical mode in influencing the evolution of strongly stratified flows 
may be significant and should not be neglected. Further work is needed at this point 
to establish the relative importance of the wavelvortex And vortex/vortex 
resonances compared to the wavelwave resonances. 
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